Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.10.377366

ABSTRACT

The new coronavirus, SARS-CoV-2, responsible for the COVID-19 pandemic has emphasized the need for a better understanding of the evolution of virus-host conflicts. ORF3a in both SARS-CoV-1 and SARS-CoV-2 are ion channels (viroporins) and involved in virion assembly and membrane budding. Using sensitive profile-based homology detection methods, we unify the SARS-CoV ORF3a family with several families of viral proteins, including ORF5 from MERS-CoVs, proteins from beta-CoVs (ORF3c), alpha-CoVs (ORF3b), most importantly, the Matrix (M) proteins from CoVs, and more distant homologs from other nidoviruses. By sequence analysis and structural modeling, we show that these viral families utilize specific conserved polar residues to constitute an ion-conducting pore in the membrane. We reconstruct the evolutionary history of these families, objectively establish the common origin of the M proteins of CoVs and Toroviruses. We show that the divergent ORF3a/ORF3b/ORF5 families represent a duplication stemming from the M protein in alpha- and beta-CoVs. By phyletic profiling of major structural components of primary nidoviruses, we present a model for their role in virion assembly of CoVs, ToroVs and Arteriviruses. The unification of diverse M/ORF3 ion channel families in a wide range of nidoviruses, especially the typical M protein in CoVs, reveal a conserved, previously under-appreciated role of ion channels in virion assembly, membrane fusion and budding. We show that the M and ORF3 are under differential evolutionary pressures; in contrast to the slow evolution of M as core structural component, the CoV-ORF3 clade is under selection for diversification, which indicates it is likely at the interface with host molecules and/or immune attack.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.04.977736

ABSTRACT

A novel coronavirus (SARS-CoV-2) is the causative agent of an emergent severe respiratory disease (COVID-19) in humans that is threatening to result in a global health crisis. By using genomic, sequence, structural and evolutionary analysis, we show that Alpha- and Beta-CoVs possess several novel families of immunoglobulin (Ig) domain proteins, including ORF8 and ORF7a from SARS-related coronaviruses and two protein groups from certain Alpha-CoVs. Among them, ORF8 is distinguished in being rapidly evolving, possessing a unique insert and a hypervariable position among SARS-CoV-2 genomes in its predicted ligand-binding groove. We also uncover many Ig proteins from several metazoan viruses which are distinct in sequence and structure but share an architecture comparable to that of CoV Ig domain proteins. Hence, we propose that deployment of Ig domain proteins is a widely-used strategy by viruses, and SARS-CoV-2 ORF8 is a potential pathogenicity factor which evolves rapidly to counter the immune response and facilitate the transmission between hosts.


Subject(s)
COVID-19 , Respiratory Tract Diseases
SELECTION OF CITATIONS
SEARCH DETAIL